Notebookcheck Logo

Według badania sfinansowanego przez Apple, ludzie mogą z łatwością przechytrzyć sztuczną inteligencję

Ludzie kontra AI (Źródło obrazu: Wygenerowano przy użyciu DALL-E 3)
Ludzie kontra AI (Źródło obrazu: Wygenerowano przy użyciu DALL-E 3)
Choć silniki sztucznej inteligencji, takie jak Meta i OpenAI, które wykorzystują duże modele językowe, często zapewniają imponujące wyniki, wciąż brakuje im podstawowych możliwości rozumowania. Grupa wspierana przez Apple zaproponowała nowy test porównawczy, który już ujawnił, że nawet najmniejsze zmiany w zapytaniu mogą prowadzić do zupełnie innych odpowiedzi.
AI Science Fail

Na początku tego miesiąca zespół sześciu naukowców zajmujących się sztuczną inteligencją, wspierany przez Apple, opublikował badanie, w którym przedstawił GSM-Symbolic, nowy benchmark sztucznej inteligencji, który "umożliwia bardziej kontrolowane oceny, zapewniając kluczowe spostrzeżenia i bardziej wiarygodne wskaźniki do pomiaru zdolności rozumowania modeli" Niestety, wygląda na to, że LLM są nadal poważnie ograniczone i brakuje im najbardziej podstawowych możliwości rozumowania, ujawniły wstępne testy przeprowadzone przy użyciu GSM-Symbolic z silnikami sztucznej inteligencji ikon branżowych, takich jak Meta i OpenAI.

Problem z istniejącymi modelami, jak wykazały wspomniane testy, polega na braku niezawodności LLM, gdy są one poddawane podobnym zapytaniom. W badaniu stwierdzono, że niewielkie zmiany w sformułowaniu, które nie zmieniłyby znaczenia zapytania dla człowieka, często prowadzą do różnych odpowiedzi od botów AI. Badanie nie wskazało żadnego modelu, który wyróżniałby się na tle innych.

"W szczególności, wydajność wszystkich modeli spada [nawet], gdy tylko wartości liczbowe w pytaniu są zmieniane w benchmarku GSM-Symbolic"

podsumowano badania, odkrywając również, że

"kruchość rozumowania matematycznego w tych modelach [pokazuje], że ich wydajność znacznie się pogarsza wraz ze wzrostem liczby klauzul w pytaniu"

Badanie, które ma 22 strony, można znaleźć pod adresem tutaj (plik PDF). Ostatnie dwie strony zawierają problemy, w których na końcu dodano pewne nieistotne informacje, które nie powinny zmienić ostatecznego wyniku dla człowieka rozwiązującego zadanie. Jednak zastosowane modele sztucznej inteligencji wzięły pod uwagę również te części, dostarczając błędnych odpowiedzi.

Podsumowując, modele sztucznej inteligencji wciąż nie są w stanie wyjść poza rozpoznawanie wzorców i wciąż brakuje im możliwości generalizowania problemów. W tym roku zaprezentowano kilka modeli LLM, w tym Meta AI Llama 3.1, Nvidia Nemotron-4, Anthropic Claude 3japoński Fugaku-LLM (największy model kiedykolwiek wytrenowany wyłącznie na mocy procesora) oraz Novaprzez Rubik's AI, rodzinę LLM, która została zaprezentowana na początku tego miesiąca.

Jutro nakładem wydawnictwa O'Reilly ukaże się pierwsze wydanie książki Hands-On Large Language Models: Language Understanding and Generation, autorstwa Jaya Alammara i Maartena Grootendorsta. Jego cena wynosi 48,99 USD (Kindle) lub 59,13 USD (wersja papierowa).

Źródło(a)

Please share our article, every link counts!
Mail Logo
> laptopy testy i recenzje notebooki > Nowinki > Archiwum v2 > Archiwum 2024 10 > Według badania sfinansowanego przez Apple, ludzie mogą z łatwością przechytrzyć sztuczną inteligencję
Codrut Nistor, 2024-10-14 (Update: 2024-10-14)